Application of Self-Organizing Mapping Neural Network for Discovery of Market Behavior of Equity Fund

نویسنده

  • JEN-HUA CHEN
چکیده

Maximizing the profit and minimizing the loss notwithstanding the trend of the market is always desirable in any investment strategy. The present research develops an investment strategy, which has been verified effective in the real world, by employing self-organizing map neural network for mutual funds and tracking the trends of stock market indices according to macro-economy indicators, weighted indices, and rankings of mutual funds. Our experiment shows if utilizing strategy 3 according to our model during a period from January 2002 to December 2008 the total returns could be at 122 percents even though the weighted index falls 22 percents and averaged investment returns for random transaction strategies stand at minus 25 percents during the same period. As such, we conclude that our model does efficiently increase the investment return.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Self-Organizing Mapping Neural Network for Discovery Market Behavior of Equity Fund

Maximizing the profit and minimizing the loss notwithstanding the trend of the market is always desirable in any investment strategy. The present research develops an investment strategy, which has been verified effective in the real world, by employing self-organizing map neural network for mutual funds tracking the trends of stock market indices according to macroeconomics indicators and weig...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009